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Abstract
In this paper we comment on part of a recent paper by Schroer and Wiesbrock.
Therein they calculate some new modular structure for the U(1)-current algebra
(Weyl algebra). We point out that their findings are true in a more general
setting. The split-property allows an extension to doubly-localized algebras.

PACS numbers: 11.25.Hf, 02.10.De, 02.10.Hh, 02.40.−k, 03.70.+k

1. Introduction

We would like to add a point to a recent inspiring work of Schroer and Wiesbrock [1]1 implying
a modular origin of the chiral ‘higher dilation’ diffeomorphisms.

For the U(1)-current algebra in two-dimensional spacetime they construct states invariant
under higher representations of the Möbius group, generated by the modes L−n,0,n. The new
states fulfil the KMS-property with respect to modified dilations. These modified dilations
are identified with the modular group associated with von Neumann algebras localized in
well-chosen regions and the new states.

In the original version [1] of the conjecture it was overlooked that the chosen state
lacked the property of faithfulness if used on doubly-localized intervals. As far as the
demonstration of the modular origin of the diffeomorphism group was concerned this was
corrected in the work of Schroer and Fassarella [3], but the correction was at the expense
of the original conjecture. Here, we show that due to the geometrical properties of the
modified transformations, respectively the new F-S states, the use of the split-property [16]
allows a faithful extension of these F-S states to doubly-localized intervals and in this way
the demonstration of the modular origin of the diffeomorphism group is harmonized with the
understanding of the modular structure of double intervals.

One can also show that their calculations in the U(1) case extend to general rational
conformal field theories.

1 Recently, this work was corrected in an important point and also extended by Schroer and Fassarella [3]. Their
new results also demanded a correction of an earlier version of this paper.

0305-4470/02/306319+10$30.00 © 2002 IOP Publishing Ltd Printed in the UK 6319

http://stacks.iop.org/ja/35/6319


6320 K Ebrahimi-Fard

In section 2, we sketch briefly the ansatz and the result concerning the modular structure
in the case of the U(1)-current algebra. Section 3 contains our point to add, providing a more
general point of view of the aforementioned results of Schroer and Wiesbrock. Their findings
are shown to be true in the general setting of a rational conformal field theory. As a non-trivial
example it serves the theory of non-Abelian currents. In section 4, we investigate so-called
multilocalized algebras by using the split-property. The product states and modular group
of such algebras are identified. Some additional remarks and a short summary are given in
section 5.

2. Schroer–Wiesbrock setting: U(1)-current algebra

Conformal field theory in two dimensions (CFT2) [15] provides a well-suited realm for
algebraic quantum field theory [2]2, especially for problems concerning the geometric
identification of the modular structure [4, 5].

Minkowskian CFT2 may be represented on the product of two circles, S1 × S1-spacetime
(the ‘compact picture’). The global symmetry group of the CFT2 is the Möbius group
PSU(1, 1) × PSU(1, 1). We will concentrate on one of the groups, being realized on one of
the circles:

PSU(1, 1) := SU(1, 1)/{±1}

SU(1, 1) :=
{(

α β

β̄ ᾱ

) ∣∣∣∣∣ α, β ∈ C, |α|2 − |β|2 = 1

}
.

The spectrum generating algebra of reparametrizations of the circle is generated by the Virasoro
algebra (with central charge c) Lc:

[Ln,Lm] = (n − m)Ln+m +
c

12
(n3 − n)δn+m,0 n ∈ Z. (1)

The globally realized group PSU(1, 1) has the underlying generators L−1, L0, L1, fulfilling
a sl(2, C)-algebra:

[L1, L−1] = 2L0 [L±1, L0] = ±L±1. (2)

The Virasoro algebra Lc contains infinitely many further sl(2, C)-algebras, generated by the
modes L−n, L0, Ln, n > 1:

L−n �→ L̃−n := 1

n
L−n

L0 �→ L̃0 := 1

n
L0 +

c

24

(n2 − 1)

n

L+n �→ L̃+n := 1

n
L+n

�−→
{

[L̃+n, L̃−n] = 2L̃0

[L̃±n, L̃0] = ±L̃±n

}
sl(2, C). (3)

The corresponding finite transformations are of the form:

gn(z) :=
(

αzn + β

β̄zn + ᾱ

) 1
n

(
α β

β̄ ᾱ

)
∈ PSU(1, 1). (4)

They leave the unit-circle S1 invariant.
One may equally well represent the CFT2 on a product of lines, R × R-spacetime (the

‘non-compact picture’). The coordinate transformation from the circle to the line is provided
by the stereographic projection (Cayley transformation):

S1\{−1} � z �−→ x(z) := −i
z − 1

z + 1
∈ R −1 �−→ ∞. (5)

2 For a very recent review of the current state of algebraic QFT, see [6].
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The global symmetry group PSU(1, 1) transforms isomorphically in this process into the real
group PSL(2, R) [7]:

R � x �−→ ĝ(x) := ax + b

cx + d
ad − bc = 1.

It is slightly more cumbersome to handle the transformations analogue to equation (4) in the
non-compact picture. For this reason we perform the calculations in the compact picture
representation.

Schroer and Wiesbrock take as a paradigm of their discussion the U(1)-current algebra on
the circle. The constituting relation of this U(1)-algebra is the current–current commutation
relation (with the circle as base space):

[J (z), J (w)] = −∂zδ(z − w).

In order to bring the algebraic ansatz [16] to the stage one has to smear the currents by real
testfunctions on the circle:

J (f ) :=
∫

S1

dz

2π i
f (z) J (z).

The bounded operators eiJ (f ) give rise to a von Neumann algebra, i.e., weakly closed algebra
of bounded operators:

W(I) := {W(f ) := eiJ (f )| supp(f ) ⊆ I ⊂ S1}′′
which is called (local) Weyl algebra [8, 17]. The double prime indicates here the double
commutant which after a theorem by von Neumann (double-commutant theorem [17])
equals the weak closure of the algebra generated by the eiJ (f ). The net of Weyl algebras
{S1 ⊃ I �→ W(I)} fulfils the postulates of algebraic quantum field theory, in particular,
locality [10].

The one-parameter group of dilations in PSU(1, 1) has the following form:

Dil(t)z = ch(πt)z + sh(πt)

sh(πt)z + ch(πt)
t ∈ R z ∈ S1. (6)

These mappings have the points {1,−1} ∈ S1 as fixpoints. The upper and lower semi-circles,
S1

+ and S1
−, respectively are mapped by dilations onto themselves. A dilation group attached

to an arbitrary, proper interval I ⊂ S1 (mapping this interval onto itself) is constructed as
follows:

PSU(1, 1) � DilI(t) := g−1
I Dil(t)gI gI ∈ PSU(1, 1) gII = S1

+. (7)

The interval I is mapped bijectively to the upper semi-circle, dilated and mapped back as one
can see in the following diagram:

S1
+ S1

+
�

Dil

I I�DilI

�
gI �

g−1
I .

The representation of the one-parameter group of dilations (equation (7)) gives
(a geometric realization of) the unique modular group

{
�it

I·; t ∈ R
}

[16, 17] of the
(vacuum) tuple (W(I), ω0). For the case of the upper and lower semi-circles which in
the non-compact picture become positive and negative lightrays this follows from the work
of Bisognano and Wichmann [4]. It is a peculiarity of CFT2 that arbitrary intervals can be
mapped onto the upper (or lower) semi-circle which therefore allows to identify the modular
group of algebras localized in these regions with the above constructed dilations.



6322 K Ebrahimi-Fard

The vacuum expectation values of Weyl operators obey the KMS-condition [11, 16, 17]
with respect to (the representation of) the one-parameter group of dilations [12]:

ω0
(
W(f ) Ad

[
UDilI(t)

]
(W(g))

) KMS= ω0
(
Ad

[
UDilI(t+i)

]
(W(g)) W(f )

)
(8)

W(f ), W(g) ∈ W(I). In the case of the vacuum state this is a necessary and sufficient
condition to identify uniquely the one-parameter group of dilations as the modular group [18]
mentioned above.

By a simple reparametrization of the unit-circle S1 ⊂ C in terms of the conformal mapping
S1 � z �−→ zn, 1 < n ∈ N, Schroer and Wiesbrock construct a geometrical state ω2 for the
case n = 2. We shall henceforth refer to it as F-S state. This state is shown to be invariant
under transformations of the form (4) for n = 2:

g2(z) :=
(

αz2 + β

β̄z2 + ᾱ

) 1
2

(
α β

β̄ ᾱ

)
∈ PSU(1, 1). (9)

For intervals:

I 1
2 := I1 ∪ I2 Ii

z2−→ I i = 1, 2 (10)

the modified dilations act the following way:

Dil2,I(t) (•) := (DilI(t) (•)2)
1
2

= (
g−1
I Dil(t) gI (•)2) 1

2 (11)

(see the following diagram)

I 1
2

(•)2���

S1
+ S1

+
�

Dil

I I�DilI

�
gI �

g−1
I

I 1
2

I
(•)

1
2���

�Dil2,I

The F-S state ω2 may be defined in the following manner:

ω2(W(f ) W(g)) := ω0
(
W

(
f 1

2

)
W

(
g 1

2

))
W(f ),W(g) ∈ W(Ĩ) (12)

with f 1
2
(•) := f

(
(•)

1
2
)
, supp

(
f 1

2

) ⊂ I, Ĩ z2−→ I. It amounts to the following pointwise
prescription for the current two-point function:

ω2(J (z)J (w)) := 2z 2w ω0(J (z2)J (w2)). (13)

At this point, it is essential that the interval Ĩ, i.e. localization region of the algebra W(Ĩ) in
equation (12), does not contain opposite points z,w ∈ S1, arg(z) − arg(w) = 0, mod

(
2π
2

)
.

Otherwise, the F-S state becomes non-faithful as one can see easily by the following example
of an operator W ∈ W(Ĩ):

W := 1 − W(g)W(f ) f |supp(f ) = −g|supp(g) supp(f ) = −supp(g) ⊂ Ĩ. (14)

Localizing the algebra W in only one of the two intervals Ii ⊂ I 1
2 , i = 1, 2, one is able to

identify the modular group of the standard tuple (W(I), ω2) (I stands for the chosen interval,
i.e. I1 respectively I2) with the transformations in equation (11) by showing the KMS-property
for the state ω2:3

ω2
(
W(f ) Ad

[
UDil2,I (t)

]
(W(g))

) KMS= ω2
(
Ad

[
UDil2,I(t+i)

]
(W(g)) W(f )

)
. (15)

3 Schroer and Wiesbrock essentially did the calculations in [1], whereas in [3] the correction, i.e. the limitation to
only one of the two intervals as localization region was mentioned.
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Using equation (12) this may be reduced to the vacuum case:

ω0
(
W

(
f 1

2

)
Ad

[
UDilI (t)

](
W

(
g 1

2

))) KMS= ω0
(
Ad

[
UDilI (t+i)

](
W

(
g 1

2

))
W

(
f 1

2

))
. (16)

The faithful F-S state ω2 on the algebra W(I) has a unique vector implementation |ω2〉 in the
natural cone P|ω0〉 of the standard pair (W(I), |ω0〉) [3, 16]:

ω2(W) = 〈ω2|W |ω2〉 W ∈ W(I). (17)

We want to point out in the following section that the above results of Schroer and Wiesbrock
concerning the invariance of the modified states with respect to the modified PSU(1, 1)

group and the KMS-property of these states with respect to the modified dilations are general
properties for any CFT2 since the mentioned properties can, as we will show, be drawn through
the substitutions z �−→ zn,∀n ∈ N.

3. Extension to general rational conformal field theories

In the following we keep the pointwise prescription of fields. We generalize to arbitrary n ∈ N,
defining states |ωn〉 for local chiral primary fields φ(z) on S1 by the identity:

〈ωn|
l∏

k=1

φk(zk)|ωn〉 :=
l∏

s=1

(
nzn−1

s

)�s 〈ω0|
l∏

k=1

φk

(
zn
k

) |ω0〉. (18)

Using the Möbius invariance of the vacuum |ω0〉 one can show the invariance of |ωn〉 under
transformations of the form (4) as follows:

φi(zi) −→ (∂z{gn(z)}|z=zi
)�iφi(gn(zi))

〈ωn|
l∏

k=1

φk(zk)|ωn〉 −→
l∏

i=1

(∂z{gn(z)}|z=zi
)�i 〈ωn|

l∏
j=1

φj (gn(zj ))|ωn〉

eq(18)=
l∏

i=1

(∂z{gn(z)}|z=zi
)�i

l∏
j=1

(n{gn(zj )}n−1)�j 〈ω0|
l∏

k=1

φk({gn(zk)}n)|ω0〉

eq(4)=
l∏

i=1

(∂z{gn(z)}|z=zi
)�i

l∏
j=1

(n{gn(zj )}n−1)�j 〈ω0|
l∏

k=1

φk

(
g

(
zn
k

)) |ω0〉

g ∈ PSU(1, 1)

=
l∏

i=1

(∂z{gn(z)}|z=zi
)�i

l∏
j=1

(n{gn(zj )}n−1)�j

×
l∏

r=1

1(
∂z{g(z)}|z=zn

r

)�r
〈ω0|

l∏
k=1

φk

(
zn
k

) |ω0〉

eq(18)= 〈ωn|
l∏

i=1

φi(zi)|ωn〉. (19)

For the one-parameter group of modified dilations:

Diln(t)z : = (Dil(t)zn)
1
n

=
(

ch(πt)zn + sh(πt)

sh(πt)zn + ch(πt)

) 1
n (20)
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one would like the following KMS-relation to be satisfied:

(
∂v{Diln(t)v}|v=zl

)�l 〈ωn|
l−1∏
k=1

φk(zk) φl(Diln(t)zl)|ωn〉

eq(18)=
l−1∏
i=1

(
nzn−1

i

)�i
[
(∂v{Diln(t)v}|v=zl

)�l (n{Diln(t)zl}n−1)�l
]

× 〈ω0|
l−1∏
k=1

φk

(
zn
k

)
φl

(
Dil(t)zn

l

) |ω0〉

=
l∏

i=1

(
nzn−1

i

)�i
(
∂v{Dil(t)v}|v=zn

l

)�l 〈ω0|
l−1∏
k=1

φk

(
zn
k

)
φl

(
Dil(t)zn

l

) |ω0〉

!
(KMS)
=

l∏
i=1

(
nzn−1

i

)�i
(
∂v{Dil(t + i)v}|v=zn

l

)�l 〈ω0|φl

(
Dil(t + i)zn

l

) l−1∏
k=1

φk

(
zn
k

) |ω0〉

eq(18)= (
∂v{Diln(t + i)v}|v=zl

)�l 〈ωn|φl(Diln(t + i)zl)

l−1∏
k=1

φk(zk)|ωn〉. (21)

We have managed here to prove the KMS-condition for the chiral part of the correlation
function in the modified (|ω0〉 �→ |ωn〉) theory provided that the KMS-condition holds in the
unmodified theory. But the latter is not precisely true. One picks, in general, a monodromy
shift in the analytic continuation t �→ t + is, s ∈ [0, 1],4 which amounts to a full circle in
complex space, returning to the same point on a different Riemann sheet. We may assume that
the monodromy under consideration is diagonalized in a suitably chosen basis of conformal
blocks and that the ensuing phase factors are compensated by the inverse phase factors of
the anti-chiral block function (we assume the φ(i,j)(z, z̄) to be scalar operators). The general
situation is, what concerns the cancellation of phasefactors, faithfully represented by the
simplified situation in the case of two-point functions. The (vacuum-) two-point functions are
already defined by conformal invariance (and locality: �̄ = �) to be of the form [15]:

〈ω0|φ1(z, z̄)φ2(w, w̄)|ω0〉 = C12

|z − w|4�
. (22)

This two-point function fulfils the KMS-condition with respect to the one-parameter group of
dilations Dil(t) ∈ PSU(1, 1) (equation (6)) as one can show by direct calculation. In the case
of arbitrary n-point functions of local conformal fields φ(i,j)(z, z̄) the above argument which
holds for a rational conformal field theory [15] reduces the analytic structure essentially to
the U(1)-vertex form, i.e. equation (22). Since the KMS-property holds for equation (22) it
follows for the n-point functions as well. Here it is important that one needs both the chiral
and the anti-chiral parts.

One has the following KMS-condition for general local conformal fields:(
∂v{Dil(t)v}|v=zl

)�il
(
∂ū{Dil(−t)ū}|ū=z̄l

)�jl

× 〈ω0|
l−1∏
k=1

φ(ik,jk)(zk, z̄k) φ(il,jl )(Dil(t)zl , Dil(−t)z̄l )|ω0〉

4 In statistical physics one has the interval [0, β], {β} the inverse temperature, and the states are called β-KMS states
[16, 17].
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KMS= (
∂v{Dil(t + i)v}|v=zl

)�il
(
∂ū{Dil(−t − i)ū}|ū=z̄l

)�jl

× 〈ω0|φ(il,jl )(Dil(t + i)zl, Dil(−t − i)z̄l)

l−1∏
k=1

φ(ik,jk)(zk, z̄k) |ω0〉. (23)

A sufficient condition for locality is �ip = �jp
, p = 1, . . . , l.

Going now to the Schroer–Wiesbrock ansatz, one has the following picture on the chiral
and anti-chiral sectors, respectively, and therefore the modified states |ωn,n〉:

〈ωn,n|
l∏

k=1

φ(ik,jk )(zk, z̄k)|ωn,n〉:=
l∏

s=1

(
nzn−1

s

)�is

l∏
q=1

(
nz̄n−1

q

)�jq 〈ω0|
l∏

k=1

φ(ik,jk)

(
zn
k , z̄

n
k

) |ω0〉.

(24)

Again, the KMS-condition with respect to Diln(t)z := (Dil(t)zn)
1
n (equation (20)) on both

sectors ‘goes through covariantly’ as in equation (21).
An illustration of what has been said above in a non-trivial setting (the U(1)-current

algebra is a quasifree theory [8]) is provided by the theory of non-Abelian currents [15]. The
central relation is the current–current commutation relation (Kac–Moody algebra, with the
circle as base space):

[J a(z), J b(w)] = if abcJ c(z)δ(z − w) − kδab∂zδ(z − w). (25)

This relation allows it to calculate the m-point correlation function recursively by using the
m-1- and m-2-point function:

〈ω0|
m∏

i=1

J ai (zi)|ω0〉 eq(25)=
m∑

j=2

kδa1aj

(z1 − zj )2
〈ω0|

m∏
k=2
k �=j

J ak (zk)|ω0〉

+
m∑

j=2

if a1aj d

(z1 − zj )
〈ω0|

j−1∏
k=2

J ak (zk)J
d(zj )

m∏
l=j+1

J al (zl)|ω0〉. (26)

One can, therefore, verify the KMS-property inductively since the two-point function has the
KMS-property. For the |ωn〉 state one gets the following recurrence relation:

〈ωn|
m∏

i=1

J ai (zi)|ωn〉 eq(18)=
m∑

j=2

(
nzn−1

1

) (
nzn−1

j

)
kδa1aj(

zn
1 − zn

j

)2 〈ωn|
m∏

k=2
k �=j

J ak (zk)|ωn〉

+
m∑

j=2

(
nzn−1

1

)
if a1aj d(

zn
1 − zn

j

) 〈ωn|
j−1∏
k=2

J ak (zk)J
d(zj )

m∏
l=j+1

J al (zl)|ωn〉.

The KMS-condition with respect to Diln(t)z := (Dil(t)zn)
1
n (equation (20)) can be shown

inductively as well, since the substitution z �−→ zn goes through covariantly and therefore the
KMS-property for the vacuum carries over to the new state.

For the identification with the modular group mentioned above one needs von Neumann
algebras. It is a subtle problem to proceed from smeared unbounded field operators to local
algebras of bounded operators. By using bounded functions of unbounded local operators
as in the case of the U(1)-current algebra one has to ensure locality which might not be
conserved by this mapping. Bisognano and Wichmann gave certain sufficient conditions to
identify the von Neumann algebras to which the (Wightman-) field algebras are affiliated
[4, 17]. Generally it is a non-trivial task to verify these conditions. In the case of non-Abelian
currents, this is possible and one can therefore speak of von Neumann algebras, respectively
the associated modular group.
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4. The split-property and doubly-localized algebras

We have seen that the localization region of the algebras has to exclude opposite points to
guarantee the faithfulness of the F-S state ωn. In the following we will stick to the case
n = 2 for simplicity. Since both intervals I1,2 (equation (10)) are allowed for localizing the
algebra it seems natural to have a closer look at the two-interval, i.e. multilocalized, algebra
W(I1) ∨ W(I2) = W(I1 ∪ I2) =: W(I 1

2 ). The demand for faithfulness prohibits the direct
use of the F-S state ω2. There is, however, a way to enforce faithfulness by applying the
split-property [16, 9]5.

For two spacelike regions, i.e. disjoint intervals, the split-property implies the following:

W(I1) ∨ W(I2) � W(I1) ⊗ W(I2). (27)

This reflects in a certain sense the statistical independence of the algebras. The state ω2,
faithful and normal over either interval I1,2 can be extended to a product state, faithful and
normal over W(I 1

2 ), i.e.,

ω
p

2 (WV ) = ω2(W)ω2(V ) W ∈ W(I1), V ∈ W(I2). (28)

The modular group also splits and one can show the following theorem:

Theorem. The modular group σ t

ω
p

2
of the faithful product state ω

p

2 on the algebra W(I 1
2 ) is

given by the geometric action of Dil2(t). Moreover, the unitary implementer UDil2(t) whose
infinitesimal generator is a linear combination of L±2:

σ t

ω
p

2
= Ad

[
UDil2(t)

]
(29)

is the �it

ω
p

2
modular object of the state vector |η2〉 which represents the faithful product state

ω
p

2 in the positive cone of (W(I 1
2 ), |ω0〉).

Since the arguments are entirely similar to those which demonstrated that UDil2(t) was the
�it modular group of the faithful state ω2 on either W(I1) or W(I2), we omit the details. The
crucial point is the invariance:

ω
p

2

(
Ad

[
UDil2(t)

]
(WV )

) = ω
p

2

(
Ad

[
UDil2(t)

]
(W) Ad

[
UDil2(t)

]
(V )

)
= ω2

(
Ad

[
UDil2(t)

]
(W)

)
ω2

(
Ad

[
UDil2(t)

]
(V )

)
= ω2(W) ω2(V )

= ω
p

2 (WV ) (30)

which uses the previously established invariance of ω2. The aforementioned lack of
faithfulness of the state ω2 on the multi-interval algebra W(I 1

2 ) is related to the geometric
nature of the double interval modular group σ t

ω
p

2
.

The remarkable fact that the pairs (W(Ii), ω2), i = 1, 2, (W(I 1
2 ), ω2 × ω2) share the

same modular group action and (in the appropriate positive cones) have the same implementing
modular unitaries is also related to this. The factorization of the ω0 vacuum would not lead to
such a situation.

This result raises the question whether both modular objects of the double interval situation
(W(I 1

2 ), |η2〉) can be geometric. Formally, the candidate for a geometric J is the ‘rotated’
TCP transformation z → −z̄ which maps, for instance, the first quarter-circle S1

1 := [
0, π

2

]
to

5 Another way might be the use of a (minimal) projector E implying the faithfulness of ω2 on the reduced algebra
EWE.
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the second quarter-circle S1
2 := [

π
2 , π

]
, and the third quarter-circle S1

3 to the fourth S1
4

6

(this transformation has the same geometric effect as the analytically continued �
1
2

ω
p

2
).

However, the replacement of Haag duality by an inclusion:

W((I1 ∪ I2)
′) ⊂ W(I1 ∪ I2)

′ (31)

and its explanation in terms of superselection sectors shows that the true modular involution
has, in addition to the geometric part, an algebraic modification. A calculation of J for Abelian
current models seems to be feasible. Via the inverse algebraic lightfront holography [3] these
geometric chiral transformations correspond to fuzzy symmetries in the original net.

5. Summary

It was shown that Diln (having 2n fixpoints instead of two as Dil) is the modular group
of the standard tuple (W(I), ωn). The interval I is forbidden to contain points z,w ∈
S1, arg(z) − arg(w) = 0, mod

(
2π
n

)
.

With regard to the modular origin of the Witt–Virasoro basis it is sufficient to extend the
construction up to the n = 2 case due to relation (1).

In the case of multi-interval, i.e. multilocalized Weyl algebras (equation (27)),
transformations (29) can be identified with the modular group of the tuple (W(I 1

2 ), |η2〉).
Going to higher n by using the split-property is not totally straightforward.

Following the programme of algebraic quantum field theory this result underlines the
special rôle played by the modular theory in general local quantum field theory. Schroer and
Wiesbrock, Schroer and Fassarella [3] suggest the use of modular theory as a tool to explore
‘fuzzy’ symmetries, i.e. symmetries which do not originate from the classical Noether setting.
They also propose to investigate the relation of their findings with the notion of half-sided
modular inclusion (intersections) [2, 5, 13]. See [6, 14] for a recent account and further
references to the results in [2, 5, 13].

Investigating the latter is beyond the scope of the present work. Here, we show that a
new ansatz of Schroer and Wiesbrock (corrected in [3]) can be dealt with from a more general
point of view, since the KMS-property of the vacuum state (a general property for local fields
in the vacuum setting) carries over covariantly to the set of new F-S states. The argument
for the general validity of the KMS-property given above is true for rational conformal field
theories.

Multilocalized algebras can be defined by using the split-property which implies the
faithful states to be a product of the new constructed F-S states. The modular group naturally
splits into a product of two copies of the modified dilations whereas the modular conjugation
needs some further investigation.

Note added. We are indebted to Professor Schroer for pointing out to us the incorrectness of the implicitly assumed
faithfulness of the new states with respect to multilocalized algebras in [1]. Section 4 is based on notes by Professor
Schroer.
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